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The refractive index of a waterlike fluid is calculated from a frequency- and wave-vector-dependent
dielectric function. This model for the dielectric function of waterlike fluids as symmetric rotors is for-
mulated in terms of the self-part of the dipole-dipole correlation function and a static, wave-vector-
dependent local-field factor. The dielectric response of the waterlike fluids has been generalized to take
into account the vibrational degree of freedom of the atoms. We calculate the refractive index of water-
like fluids at the microwave-, infrared-, and optical-frequency region and compare it to the available ex-

perimental data.

PACS number(s): 66.10.—x, 77.22.Gm, 33.10.Jz

I. INTRODUCTION

Water is the most common liquid on Earth. Its prop-
erties are anomalous, including the index of refraction.
The propagation, absorption, and reflection of light in
water all pose scientific and practical problems, which re-
quire accurate knowledge of the refractive index for their
solutions. The refractive index of liquid water [1-7] un-
der atmospheric pressure has been measured by many
researchers at room temperature repeatedly for well over
a century. In spite of all of this study, problems and am-
biguities remain. Among the information accumulated
over the years on the wavelength-, temperature-, and
pressure-dependence of the refractive index, we are in-
terested in the frequency dependence, which is the least
well understood property. The main structure of water-
molecular fluids are dominated by the infrared- and
lower-frequency range of refractive index.

Recently, we published a paper on the wave-vector-
and frequency-dependent dielectric function of waterlike
fluids [8], where we developed a theory of dynamical
dielectric response. The dielectric function of waterlike
fluids was expressed in terms of the self-part of the
dipole-dipole correlation function and a static wave-
vector-dependent local-field factor. The self-correlation
function was calculated in a number-conserving
relaxation-time approximation [8] which correctly inter-
polates between diffusive behavior at low frequency and
free-particle behavior at high frequency. The local-field
factor was obtained by matching the static limit of the
dielectric function to the one obtained by a reference
hypernetted-chain approximation in Ref. [9]. The result-
ing behavior of the dielectric function was compared with
the ones obtained in previous theoretical calculations [10]
and with available experimental data for water. The re-
fractive index of the waterlike fluids at frequencies up to
the microwave-frequency range was found to be dominat-
ed by diffusive behavior. The refractive index showed a
single ‘““free-rotation” peak because it was a symmetric
rotor, and the longitudinal dielectric function exhibited a
collective resonance.

In this Brief Report our previous theory for the dielec-
tric response of the waterlike fluids is generalized to take
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into account the vibrational degree of freedom of the
atoms which are experimentally measured. The effects of
these corrections on the free rotor peak which was ob-
tained in Ref. [8] is studied and the comparison of the re-
fractive index of the waterlike fluids with experimental
data is extended to higher frequencies. Then we interpret
the refractive index of liquid water in terms of our water-
like fluid idealization.

The starting point is a collection of highly idealized
molecules, here symmetric rotors with a number of elec-
tric multipoles built into them to produce their mutual
pairwise interactions. Each molecule vibrates with small
amplitude so it can be considered as almost rigid. Gen-
erally, the frequency- and wave-vector-dependent dielec-
tric function has a tensor form, but we only consider the
dipole interaction. Therefore the system interacts with
each other via a permanent electric dipole moment p
parallel to the symmetry axis and a hard-core contact
repulsion. The value of u is taken to be equal to the di-
pole moment of an isolated water molecule. The values
of the moments of inertia (parallel and perpendicular to
the symmetry axis, respectively) are selected to approxi-
mate the behavior of a water molecule in Fig. 1. We con-
sider only linear small oscillation between one oxygen
atom and two hydrogen atoms, for simplicity. Three
normal-mode frequencies were measured by Walrafen

FIG. 1. A waterlike molecule. The torque-free symmetric
rotor of the symmetric waterlike molecular has angular momen-
tum L, and the rotor axis precesses around the L axis with uni-
form angular velocity L /1,.
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[11] and we study the three frequencies for the symmetric
waterlike molecule model.

II. THEORY

From the usual macroscopic electromagnetic equation
[9] we obtain the dielectric function € as a function of the
dynamic electric susceptibility y.
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The real part of the refractive index is expressed as
n(w)=ReV e(w) for a nonmagnetic material such as wa-
ter. There are two components of the dielectric tensor;
one parallel to the wave vector of the applied field q, and
the other perpendicular to the wave vector q. In the
g —0 limit the difference between parallel and perpendic-
ular components vanishes.

A linear response in mean-field theory is obtained by
assuming that the system responds as a collection of
noninteracting particles to an effective potential which
includes the effects of interactions of a molecule with all
other molecules. Once the static properties are calculat-
ed, the dynamical correlation functions are constructed
by means of the Kerr approximation [12]. Therefore in
the linear response one assumes that

Xs(@)
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(2)
X;s(w) is the self-part of the electric susceptibility y(w), or
single-dipole response. The local-field factor ¥ includes
all the frequency-independent coherent effects of all of
the other dipoles and it is determined from the static
dielectric function €(0) only. Notice that a more general
mean-field ansatz consists in taking ¥ to be frequency
dependent. In addition, ¥ includes the local-field correc-
tion to the average interaction

X (@)=x,(0){1+i0G, (o)} , (3)

where x,(0) is x¥2(0), the noninteracting self-response, be-
cause collisions do not affect the static response. The
static mean field ¥ is completely determined by the static
limit of the linear-response function.

Y= {x,(0)} "= {x(@}", 4)

where x,(0)=pBu?/3. p is the particle density and
B=1/kgT.

The self-correlation function Y, is calculated in a
number-conserving relaxation-time approximation [8]
which correctly interpolates between diffusive behavior at
low frequency and free-particle behavior at high frequen-
cy:
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If we use Y2(w+i/7) instead of Eq. (5) for y,(w), it fails
to conserve local particle number density. The result in
Eq. (5) corresponds with that of the electron-gas model
[13]. The evaluation of Eq. (5) requires only a knowledge
of the noninteracting response function Y, which is ob-
tained from the self-part of the Van Hove function G,,

X%(@)=x°(0) [1+mfo°°dz G, (e’ |, (©)

where G (1)={u(0)u(t)) /u?, and ( ) is the statistical
average in the absence of applied fields.

The Fourier transforms of the vibrational terms by
three normal-mode frequencies are given by some simple
shifts of the frequencies of the nonvibrational terms.
They are added to Eq. (6) to give the complete form of
x(w+i/7) in Eq. (5) (see the Appendix and Ref. [8] for
the details of the calculation).

III. INTERPRETATION

The refractive index of waterlike fluids is plotted and
compared to the experimental data in Fig. 2. We repro-
duced the first drop A’ of real water fluids due to
diffusion effects in Fig. 2. A phenomenological descrip-
tion for 4 was given by Debye [14] early in this century.
His theory described the microwave frequency falloff of
the dielectric function, but was essentially frequency in-
dependent and was much too large at all higher frequen-
cies. Thus in his theory water would appear as dark and
cloudy to infrared and visible light.

Here again, our results B’ show the free-particle peak
at the characteristic precessional frequency of the water-
like symmetric rotor. We interpret this peak as a conse-
quence of the renormalized free-rotor behavior among in-
teracting water molecules. Then B, is a torque-free pre-
cession of a water molecule. This measurement has been
carried out by Simpson, Bean, and Perkowitz [4] at the
temperature 25 °C, which will be called a “precession”
peak. But there should be another rotation peak B, com-
ing from asymmetrical rotation effects of the real water
molecule, called a ‘“nutation” peak. In the asymmetric
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FIG. 2. The real parts of the refractive index of water and
waterlike fluids. The solid line is the experimental results mea-
sured from liquid water. The dotted line is the results of the
theoretical waterlike fluids from Ref. [8] and some additions of
higher frequencies described here.
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model now under study, we find that the single free rotor
peak B’ splits into two peaks B and B,.

At frequencies just above the free-particle peak, we ob-
serve a rapid drop in Fig. 2. The most interesting feature
of these curves is the sharp resonance C that occurs at a
single wave-vector-dependent value of the frequency
Q,=(7-8)X10" sec™'. The physical meaning of this
resonance is that the system supports a long-lived collec-
tive excitation at the frequency (1, in the longitudinal
tensor component of €(q,w). The present excitation is
the exact analog of the plasmon in the charged one-
component classical plasma. In the present case, we call
it a “dipolaron,” because it includes long-range oscilla-
tions of electric dipoles. These were first discussed by
Lobo and co-workers [15] and the possibility of this col-
lective excitation was first convincingly demonstrated by
Pollock and Alder [16] in their molecular-dynamics study
of the Stockmayer fluid. Our results show that this col-
lective mode exists in symmetric rotor models. Such ex-
citations are outside of the validity of the previous
hydrodynamics-based theories [10,17]. We expect that in
the asymmetric model the collective excitation may
disappear or be strongly reduced. However, since the
collective dipolaron depends on q dispersion, which can-
not be measured through the traditional capacitance-
bridge techniques used to measure €(w), it follows that a
new light- or neutron-scattering measurement will be re-
quired to test this feature of our theory.

The spectral line D, in Fig. 3(a) arises from a bending
normal-mode oscillation which was measured indepen-
dently, called a “bending” peak. The peak D, comes
from a superposition of the two other normal-mode oscil-
lations; asymmetric and symmetric stretching in Fig. 3(b),
called a “stretching” peak. Actually, it is two peaks
which are unresolved at this accuracy. These are simple
harmonic oscillations originating from small-amplitude
normal-mode oscillations.

(a)

(b)

FIG. 3. The vibrational motion of the three normal-mode
frequencies. At the high-infrared- and optical-frequency region,
the structure of the refractive index contains peaks due to vibra-
tions. These were measured independently in Ref. [11].
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We have applied a simplified model to the calculation
of the dielectric response of a waterlike fluid of sym-
metric rotors carrying a permanent electric dipole mo-
ment and vibrating with three normal-model frequencies.
Although we studied the symmetric waterlike molecule,
we could explain all of the major peaks and valleys in the
data of the asymmetric water molecule successfully. Of
course, the asymmetric calculation of the waterlike mole-
cule is more realistic, but the calculation requires Jacobi
elliptic functions which are much more complicated. In
the future we will report on the refractive index of the
more general asymmetric water model of liquid water.
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APPENDIX

The water molecule has mass M ~18my and three
different moments of inertia, J,;=0.6127my Az,
J,=1.147Tmy A%, and J;=1.7160my A? [18], where
my is the hydrogen mass. Our model is a three-
dimensional, almost rigid, symmetrical rotor with mo-
ments of inertia I;=J, and I, =1,=(J,;+J;)/2. We as-
sume only one relaxation time 7 as the measured relaxa-
tion time of water at 25°C, 7=8.46 X 10'2 sec [19].

The motion of the single waterlike molecule in Fig. 1 is
composed of a free precession at ¢=L /I, around the
direction of the angular momentum L, and a uniform
translation of the center of mass i=P/M. Assuming
that, at time ¢ =0, the molecule is at the origin with the
3-axis pointing up along the Z direction, the time evolu-
tion of the angle y between the principal axis of the mole-
cule and the Z axis is given by
cosy (1)=cos’8, +sin?0, cos[¢(¢)], where 6, is the angle
between the angular momentum axis and the Z axis, and
the angle @ is defined in Fig. 1.

The thermal statistical average of the noninteracting
Van Hove function without vibration is given by

(P (cos[y()]))=H(s), (A1)
where P (cos[y(#)]) is the Legendre polynomial. This is
calculated by integrating over all possible values of L at
time ¢ =0 with Boltzmann weight e PT/Z where Z is
the partition function. We use Eq. (6) to calculate G, in
the present work.

Let u(t)=ez(t)cos[6(¢)] and z,(¢t)=zy+n,(t), where
z(t) is the distance between oxygen and hydrogen atoms.
6(0)=0, 6(z)=1v(¢), and yy=ez,. Therefore

G, ()= u(0)u(1))

3
=(cos[y()]) [1+1 3 [{n,(0))cos(w;1)]/25

i=1

(A2)
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The three normal-mode frequencies [11] are ©;=6.50X 10'* sec ™!, 0,=3.09X 10" sec ™}, and w;=6.81 X 10" sec ™.
From the quantum-mechanical calculation of the small oscillation {[7;(0)]?) =#%/2mw,, where m is the reduced mass
of the system, 16my /9. The self-part of the Van Hove correlation function including the vibrational effect is

1

2
0

Glo+ti/T)=H(o+i/7T)+

i=1

3
S ([, (0 [H(o+w;+i/7)+H(o—w,+i/7)]/2 . (A3)

The other calculations are identical with the steps shown in Ref. [8].
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